

LA FORMACIÓN ES LA CLAVE DEL ÉXITO

Guía del Curso SANL30 Técnico en Inmunología

Modalidad de realización del curso: Online

Titulación: Diploma acreditativo con las horas del curso

OBJETIVOS

La inmunología es una ciencia biológica que estudia todos los mecanismos fisiológicos de defensa de la integridad biológica del organismo, los cuales consisten esencialmente en la identificación de lo extraño y su destrucción. A través de este cursoes didácticas el alumnado podrá adquirir las competencias profesionales necesarias para profundizar en el estudio de los factores inespecíficos que coadyuvan a los mecanismos fisiológicos de defensa en sus efectos finales.

CONTENIDOS

PARTE 1. ORGANIZACIÓN Y GESTIÓN DE UN LABORATORIO

MODULO 1. PRÁCTICAS

- 1. Organizar las peticiones analíticas.
- 2. Interpretar el contenido de la formulación.
- 3. Clasificar las peticiones en función de su procedencia.
- 4. Clasificar las peticiones en función de su prioridad.
- 5. Distribuir las peticiones en las secciones del laboratorio.
- 6. Elaborar listados de trabajo.
- 7. Controlar las existencias de material de consumo en un laboratorio clínico.

- 8. Realizar un inventario.
- 9. Definir las necesidades mínimas de material.
- 10. Cumplimentar órdenes de pedidos.
- 11. Establecer una planificación del mantenimiento de los equipos del laboratorio.
- 12. Identificar los distintos aparatos de un laboratorio que requieren revisiones periódicas para su mantenimiento.
- Elaborar fichas con los datos necesarios para el control de aparatos (número de revisiones, responsables, protocolo de actuación en caso de fallo del equipo y otros datos)
- 14. Manejar, a nivel de usuario, bases de datos informatizadas sobre pacientes
- 15. Modificar la estructura de campos de la base de datos.
- 16. Introducir datos de pacientes.
- 17. Realizar búsquedas de datos.
- 18. Imprimir de forma «indizada» (según índice)
- 19. Elaborar informes
- 20. Elaborar los cuadros de presentación de datos.
- 21. Realizar consultas en las bases de datos.
- 22. Calcular parámetros estadísticos de actividad.
- 23. Redactar resúmenes de actividad con datos estadísticos.
- 24. Elaborar resúmenes de información científico_técnica
- 25. Realizar búsquedas de información en bases de datos médicas.
- 26. Elaborar resúmenes de artículos científicos sobre técnicas de laboratorio.
- 27. Elaborar resúmenes de manuales técnicos de funcionamiento de equipos.

- 1. Documentación sanitaria.
- 2. Documentación clínica.
- 3. Documentación no clínica.
- 4. Organización jerárquica y departamental de un centro sanitario.
- 5. Organigramas de centros sanitarios.
- 6. Organigrama de un laboratorio.
- 7. Funciones del personal de un laboratorio.
- 8. Normas de seguridad en el trabajo referidas a los aparatos y las instalaciones de los

laboratorios clínicos para la prevención de riesgos físicos y químicos.

- 9. Gestión de existencias.
- 10. Sistemas de almacenamiento.
- 11. Métodos de valoración de existencias.
- 12. Normas de seguridad e higiene en los almacenes de centros sanitarios.
- 13. Conservación de equipos.
- 14. Tipos de equipos de un laboratorio clínico.
- 15. Mantenimiento periódico de los equipos de laboratorio.
- 16. Medidas a tomar en caso de fallo de los equipos.
- 17. Aplicaciones informáticas.
- 18. Conocimientos básicos de informática.
- 19. Tipos y estructura de las bases de datos.
- 20. Aplicaciones informáticas de gestión y control de almacén.
- 21. Estadística básica.
- 22. Medidas de tendencia central.
- 23. Medidas de dispersión.
- 24. Representaciones gráficas de resultados.
- 25. Información científico_técnica.
- 26. Estructura de presentación de la información científica.
- 27. Búsqueda de información en bases de datos sanitarias.

MODULO 3. CONTENIDOS RELACIONADOS CON LA PROFESIONALIDAD

- 1. Sentido del orden y pulcritud en la organización del material.
- Ser riguroso en el cumplimiento de los protocolos de mantenimiento y revisión de los aparatos del laboratorio.
- 3. Ser fiable en la transcripción y manipulación de datos informáticos.
- 4. Empatía en la relación, tanto con el paciente como con los componentes del equipo de trabajo.
- 5. Ser estructurado y ordenado en la redacción de informes.
- 6. Adaptación a los cambios tecnológicos.

PARTE 2. TÉCNICAS DE PROCESAMIENTO DE MUESTRAS BIOLÓGICAS

MÓDULO 1. PRÁCTICAS

- 1. Reconocer las características físico_químicas de las distintas muestras
- 2. Identificar los tipos de muestras.
- 3. Describir las características físico_químicas de las muestras.
- 4. Determinar si las muestras son adecuadas para proceder a su análisis.
- 5. Obtener las muestras biológicas
- 6. Preparar tubos con anticoagulantes...
- 7. Recoger orina de 24 horas.
- 8. Tomar muestras de exudado faríngeo.
- 9. Explicar al paciente, en una simulación, el método de recogida y las normas a seguir para la obtención de una muestra.
- 10. Preparar las muestras para su procesado.
- 11. Congelar, liofilizar y reconstituir las muestras de suero o de plasma.
- 12. Centrifugar la sangre para la obtención de plasma y suero.
- 13. Centrifugar las muestras de orina.
- 14. Preparar disoluciones de distinta concentración.
- 15. Realizar los cálculos necesarios.
- 16. Medir (por pesada o volumetría) las cantidades de soluto determinadas.
- 17. Utilizar el material de vidrio adecuado para realizar la disolución.
- 18. Ajustar el pH de la disolución.
- Expresar los datos de las disoluciones en distintas magnitudes (molaridad, normalidad, molalidad)
- 20. Realizar diluciones solicitadas.
- 21. Utilizar los distintos tipos de pipetas.
- 22. Realizar las diluciones solicitadas.
- 23. Calcular la concentración final de la disolución diluida.

MÓDULO 2. CONTENIDOS TEÓRICOS

1. Muestras biológicas humanas:

- 2. Concepto de espécimen y de muestra.
- 3. Características generales de la sangre.
- 4. Diferencia entre sangre venosa y sangre capilar.
- 5. Uso de sangre en ayunas.
- 6. Utilización de suero o plasma.
- 7. Hemólisis, lipemia o ictericia como fuentes de error.
- 8. Anticoagulantes.
- 9. Características generales de la orina.
- 10. Sustancias y elementos, formas analizables en muestras de orina.
- 11. Características generales de las heces.
- Muestras seminales; LCR, líquidos serosos, exudados vaginales, exudados uretrales, exudados óticos, exudados conjuntivales y exudados nasofaríngeos; esputo y hemocultivos.
- 13. Obtención de muestras biológicas.
- 14. Obtención de plasma y suero.
- 15. Recogida de orina.
- 16. Recogida de heces.
- 17. Manipulación de las muestras biológicas.
- 18. Sistemas de transporte de las muestras.
- 19. Sistemas de recepción, identificación y distribución de las muestras.
- 20. Centrifugación de las muestras: fundamento de las técnicas de centrifugación.
- 21. Conservación de las muestras biológicas.
- 22. Normas de seguridad e higiene para la prevención de riesgos biológicos.
- 23. Cálculos en la realización de diluciones.
- 24. Normas de seguridad e higiene en la manipulación de muestras biológicas.

- 1. Amabilidad en la relación con el paciente.
- 2. Confidencialidad respecto a la información conocida sobre el paciente.
- 3. Ser riguroso en la comprobación de la identificación de las muestras.
- 4. Coordinación con los componentes del equipo multidisciplinar de trabajo.
- 5. Iniciativa para afrontar imprevistos y contingencias.

- 6. Sentido del orden en la gestión de las listas de trabajo.
- 7. Adaptación a los cambios tecnológicos.

PARTE 3. TÉCNICAS INMUNOLÓGICAS

MÓDULO 1. PRÁCTICAS

- 1. Realizar las técnicas de inmunoprecipitación en gel.
- 2. Preparar geles de agarosa.
- 3. Enfrentar antígenos y anticuerpos en reacciones de simple y doble difusión.
- 4. Determinar las concentraciones de antígenos mediante inmunodifusión radial.
- 5. Realizar las técnicas de aglutinación.
- 6. Preparar los reactivos.
- 7. Realizar las técnicas de aglutinación en placa.
- 8. Realizar las técnicas de aglutinación en tubo.
- 9. Realizar las técnicas de inhibición de la aglutinación.
- 10. Observar la formación de grumos.
- 11. Realizar las técnicas de enzimainmunoensayo para la detección de antígenos.
- 12. Preparar los reactivos.
- 13. Aplicar las muestras en las placas.
- 14. Programar los autoanalizadores.
- 15. Realizar las incubaciones y los lavados.
- 16. Obtener e interpretar los resultados.
- 17. Detectar anticuerpos por inmunofluorescencia.
- 18. Preparar las diluciones de la muestra.
- 19. Aplicar la muestra y los reactivos en los pocillos.
- 20. Observar mediante el microscopio de fluorescencia.
- 21. Realizar el control de calidad de los resultados.
- 22. Indicar los criterios de exclusión y de rechazo de muestras.
- 23. Calcular la exactitud y la precisión de los resultados.
- 24. Realizar los gráficos de control de calidad.

- 1. Fisiología de la respuesta inmune.
- 2. Inmunidad celular.
- 3. Concepto de antígeno y formación de anticuerpos.
- 4. Reacción antígeno_anticuerpo.
- 5. Sistema de complemento.
- 6. Antígenos de histocompatibilidad.
- 7. Mecanismos de la respuesta inmune.
- 8. Autoinmunidad, inmunodeficiencia e hipersensibilidad.
- Técnicas de análisis basadas en la precipitación y aglutinación de complejos antígeno_anticuerpo.
- 10. Precipitación en medio líquido.
- 11. Técnicas de precipitación en gel.
- 12. Técnicas de aglutinación con hematíes y látex.
- 13. Técnicas de inhibición de la aglutinación.
- 14. Fijación del complemento.
- 15. Inmunoensayos.
- 16. Radioinmunoensayos.
- 17. Enzimainmunoensayos.
- 18. Fluoroinmunoensayos.
- 19. Ensayos con marcadores quimioluminiscentes y bioluminiscentes.
- 20. Inmunofluorescencia.
- 21. Microscopio de fluorescencia.
- 22. Fluoróforos.
- 23. Inmunofluorescencia directa.
- 24. Inmunofluorescencia indirecta.
- 25. Control de calidad de las técnicas inmunológicas.
- 26. Controles internos y controles externos.
- 27. Programas de control de calidad.
- 28. Coeficientes de variación.
- 29. Gráficos de control de calidad.

- 1. Seguimiento de los protocolos establecidos para la aplicación de las técnicas.
- 2. Observación para la detección de errores durante la aplicación de las técnicas.
- 3. Ser riguroso en la realización de los controles de calidad y en el tratamiento de los datos obtenidos.
- 4. Cumplimiento de las normas de seguridad e higiene laboral.
- 5. Iniciativa y seguridad en la toma de decisiones.
- 6. Adaptación a los cambios tecnológicos.

PARTE 4. TÉCNICAS DE DETERMINACIÓN DE METABOLITOS EN QUÍMICA CLÍNICA

MÓDULO 1. PRÁCTICAS

- 1. Realizar las determinaciones analíticas de metabolitos y enzimas con fotómetros o espectrofotómetros.
- 2. Preparar los reactivos y las disoluciones patrón y de control.
- 3. Pipetear las muestras y los reactivos.
- 4. Incubar las muestras y el reactivo.
- 5. Utilizar fotómetros o espectrofotómetros para determinar la absorbancia de las muestras, los patrones y los controles.
- 6. Calcular las concentraciones de las muestras y los controles a partir de los patrones e interpretar los resultados obtenidos.
- 7. Realizar las curvas de calibrado utilizando fotómetros o espectrofotómetros y las distintas diluciones de las disoluciones patrón.
- 8. Realizar las determinaciones de fotometría de absorción molecular de metabolitos y enzimas con autoanalizadores.
- 9. Preparar los reactivos, las disoluciones patrón y de control.
- 10. Programar los autoanalizadores para las determinaciones a realizar.
- 11. Trasvasar las muestras a las cubetas de los autoanalizadores.

- 12. Interpretar los resultados obtenidos.
- 13. Determinar los iones sodio y potasio con fotómetros de llama.
- 14. Diluir las muestras en la forma adecuada.
- 15. Programar los fotómetros para las determinaciones a realizar.
- 16. Obtener e interpretar los resultados.
- 17. Realizar las operaciones de limpieza y de mantenimiento de los fotómetros de llama.
- 18. Realizar las determinaciones de gases en sangre y el equilibrio ácido_base:
- 19. Inocular las muestras en gasómetros.
- 20. Comprobar el contenido de los recipientes de reactivos y de las botellas de gases y, en caso necesario, reponerlos.
- 21. Obtener e interpretar los resultados.
- 22. Calcular las concentraciones de bicarbonato y de ácido carbónico a partir de los datos de pH y de presión parcial de CO2 obtenidos mediante gasómetros.
- 23. Realizar mantenimiento de los electrodos.
- 24. Realizar el control de calidad de los resultados.
- 25. Indicar los criterios de exclusión y de rechazo de muestras.
- 26. Calcular la exactitud y la precisión de los resultados.
- 27. Realizar los gráficos de control de calidad.

- Estructura, función y metabolismo de las sustancias analizables en el laboratorio de Química Clínica.
- Estructura química y conceptos metabólicos básicos sobre glúcidos, lípidos y proteínas.
- 3. Enzimología clínica.
- 4. Fisiología del equilibrio hidroelectrolítico y ácido_base del organismo.
- 5. Espectrofotometría de absorción y dispersión.
- 6. Interacción de la radiación y la materia: absorción y dispersión de luz.
- 7. Ley de Lambert_Beer.
- 8. Transmitancia y absorbancia.
- 9. Componentes de un fotómetro y de un espectrofotómetro.
- 10. Cálculo de las concentraciones mediante el uso de patrones y curvas de calibrado.
- 11. Tipos de autoanalizadores utilizados en Bioquímica.

- 12. Nefelometría y turbidimetría.
- 13. Espectrofotometría de emisión y absorción atómica.
- 14. Fundamentos físicos de la fotometría de llama.
- 15. Componentes de un fotómetro de llama.
- 16. Fundamentos físicos de la espectrofotometría de absorción atómica.
- 17. Componentes de un espectrofotómetro de absorción atómica.
- 18. Uso de patrones en la espectrofotometría de absorción atómica.
- 19. Técnicas basadas en la detección de potenciales eléctricos.
- 20. Ecuación de Nernst.
- 21. Ecuación de Henderson_Hasselbach.
- 22. Determinación de concentraciones mediante electrodos.
- 23. Tipos de electrodos.
- 24. Control de calidad en Química Clínica.
- 25. Controles internos y controles externos.
- 26. Programas de control de calidad.
- 27. Coeficientes de variación.
- 28. Gráficos de control de calidad.

- 1. Seguimiento de los protocolos establecidos para la aplicación de las técnicas.
- 2. Observación para la detección de errores durante la aplicación de las técnicas.
- 3. Ser riguroso en la realización de los controles de calidad y en el tratamiento de los datos obtenidos.
- 4. Cumplimiento de las normas de seguridad e higiene laboral.
- 5. Iniciativa y seguridad en la toma de decisiones.
- 6. Adaptación a los cambios tecnológicos.

PARTE 5. TÉCNICAS DE SEPARACIÓN EN BIOQUÍMICA

MÓDULO 1. PRÁCTICAS

1. Realizar la electroforesis de productos biológicos en soporte de acetato de celulosa.

- 2. Preparar los reactivos y los soportes.
- 3. Preparar las cubetas de electroforesis y las fuentes de alimentación.
- 4. Preparar las muestras y aplicarlas en soportes.
- 5. Seleccionar los voltajes para realizar la electroforesis.
- 6. Revelar los soportes una vez se ha realizado la separación.
- 7. Leer los resultados mediante densitómetro.
- 8. Realizar cromatografías líquidas de intercambio iónico en columna.
- 9. Preparar las muestras.
- 10. Preparar los geles para soporte.
- 11. Empaquetar los geles en columnas.
- 12. Inocular las muestras y realizar las cromatografías.
- 13. Cuantificar las fracciones obtenidas en la separación.
- 14. Realizar una cromatografía líquida de alta precisión (HPLC)
- 15. Seleccionar las columnas y los detectores.
- 16. Inocular las muestras.
- 17. Obtener los cromatogramas.
- 18. Calcular las resoluciones, los volúmenes de distribución y las selectividades.
- 19. Realizar la determinación de fármacos y drogas de abuso.
- 20. Preparar los materiales y los reactivos necesarios.
- 21. Elegir la técnica en función del fármaco o de la droga de abuso a determinar (inmunoensayo, cromatografía o fotometría de llama)
- 22. Realizar la técnica.
- 23. Obtener los resultados.
- 24. Realizar el control de calidad de los resultados.
- 25. Indicar los criterios de exclusión y rechazo de muestras.
- 26. Calcular la exactitud y la precisión de los resultados.
- 27. Realizar los gráficos de control de calidad.

- 1. Electroforesis.
- 2. Fundamento teórico de la separación electroforética.
- 3. Componentes de un equipo de electroforesis.
- 4. Tipos de soporte.

- 5. Preparación de los soportes.
- 6. Aplicación de la muestra.
- 7. Revelado de las placas de electroforesis.
- 8. Densitometría.
- 9. Técnicas electroforéticas especiales.
- 10. Isoelectroenfoque.
- 11. Electroforesis en SDS.
- 12. Inmunoelectroforesis.
- 13. Electroinmunodifusión.
- 14. Cromatografía.
- 15. Fundamento teórico de las separaciones cromatográficas.
- 16. Clasificación de las técnicas cromatográficas.
- 17. Cromatografía en papel, cromatografía en capa fina y cromatografía en columna.
- 18. Definición y cálculo de los parámetros utilizados en las separaciones cromatográficas.
- 19. Mecanismos de separación.
- 20. Cromatógrafos empleados en HPLC y cromatografía de gases.
- 21. Determinación de fármacos y drogas de abuso.
- 22. Tipos/clasificación de fármacos y drogas de abuso.
- 23. Monitorización de fármacos terapéuticos.
- 24. Detección de drogas de abuso.
- 25. Control de calidad de las técnicas electroforéticas y cromatográficas.
- 26. Controles internos y controles externos.
- 27. Programas de control de calidad.
- 28. Coeficientes de variación.
- 29. Gráficos de control de calidad.

- 1. Seguimiento de los protocolos establecidos para la aplicación de las técnicas.
- 2. Observación para la detección de errores durante la aplicación de las técnicas.
- 3. Ser riguroso en la realización de los controles de calidad y en el tratamiento de los datos obtenidos.
- 4. Cumplimiento de las normas de seguridad e higiene laboral.

- 5. Iniciativa y seguridad en la toma de decisiones.
- 6. Adaptación a los cambios tecnológicos.

PARTE 6. TÉCNICAS DE ANÁLISIS MOLECULAR

MÓDULO 1. PRÁCTICAS

- 1. Realizar estudios cromosómicos.
- 2. Preparar los cultivos celulares.
- 3. Realizar las tinciones.
- 4. Realizar las microfotografías y seleccionar las metafases.
- 5. Identificar y ordenar los cromosomas.
- 6. Realizar las técnicas de PCR.
- 7. Preparar las muestras.
- 8. Preparar las disoluciones para realizar las amplificaciones de ADN (pH, cebadores y sales)
- 9. Programar los ciclos de temperatura.
- 10. Recuperar el material genético amplificado.
- 11. Obtener y separar fragmentos de ADN
- 12. Realizar la rotura específica de ADN con endonucleasas de restricción.
- 13. Realizar la electroforesis de los fragmentos obtenidos.
- 14. Leer los resultados.

- 1. Estructura y función de los ácidos nucleicos.
- 2. Estructura del núcleo, la cromatina y los cromosomas.
- 3. El ácido desoxirribonucleico como material genético.
- 4. Desnaturalización del ADN.
- 5. Replicación, transcripción y traducción de la información genética.
- 6. Principios básicos de la regulación genética.
- 7. Alteraciones en el ADN: mutaciones.
- 8. Objetivos y técnicas de los estudios cromosómicos.
- 9. Cultivos de linfocitos y de fibroblastos.

- 10. Preparación de las muestras.
- 11. Microfotografías e identificación de los cromosomas.
- 12. Técnicas básicas en el diagnóstico molecular.
- 13. Electroforesis de ácidos nucleicos.
- 14. Sondas genéticas. Técnicas de marcado de sondas.
- 15. Técnicas de transferencia e hibridación de ácidos nucleicos y proteínas: Southern, Northern y Western "blotting", "Dot Blot" e Hibridación "in situ".
- 16. Enzimas de restricción y técnicas de ruptura inespecífica de ADN.
- 17. Tecnología del ADN recombinante.
- 18. ADNc.
- 19. Amplificación mediante la reacción en cadena de la polimerasa (PCR)
- 20. Análisis de secuencias de ADN.
- 21. Transferencia de ADN a células eucariotas.
- 22. Aplicación de la genética molecular a:
- 23. Aplicación de la genética molecular al diagnóstico de enfermedades hereditarias.
- 24. Análisis molecular directo e indirecto.
- 25. Ejemplos de patologías estudiadas mediante técnicas de genética molecular.
- 26. Aplicación de la genética molecular al estudio de enfermedades genéticas adquiridas (cáncer)
- 27. Funciones de los oncogenes y factores de crecimiento.
- 28. Genes de familia ras.
- 29. Aplicación de la genética molecular al estudio de las patologías infecciosas.
- 30. Aplicaciones de la genética molecular en medicina legal y forense.

- 1. Seguimiento de los protocolos establecidos para la aplicación de las técnicas.
- 2. Observación para la detección de errores durante la aplicación de las técnicas.
- 3. Ser riguroso en la realización de los controles de calidad y en el tratamiento de los datos obtenidos.
- 4. Cumplimiento de las normas de seguridad e higiene laboral.
- 5. Iniciativa y seguridad en la toma de decisiones.
- 6. Adaptación a los cambios tecnológicos.

C/ San Lorenzo 2 - 2 29001 Málaga

Tlf: 952 215 476 Fax: 951 987 941

www.academiaintegral.com.es

E-mail: info@academiaintegral.com.es

