

### LA FORMACIÓN ES LA CLAVE DEL ÉXITO

#### Guía del Curso

# MF0101\_2 Soldadura con Arco Bajo Gas Protector con Electrodo Consumible

Modalidad de realización del curso: A distancia y Online

Titulación: Diploma acreditativo con las horas del curso

### **OBJETIVOS**

En el ámbito del mundo de la fabricación mecánica es necesario conocer la soldadura oxigas y soldadura mig/mag Así, con el presente curso se pretende aportar los conocimientos necesarios para conocer la soldadura con arco bajo gas protector con electrodo consumible.

#### **CONTENIDOS**

MÓDULO 1. SOLDADURA CON ARCO BAJO GAS PROTECTOR CON ELECTRODO CONSUMIBLE

UNIDAD FORMATIVA 1. PROCESOS DE CORTE Y PREPARACIÓN DE BORDES

UNIDAD DIDÁCTICA 1. SEGURIDAD EN EL CORTE DE CHAPAS Y PERFILES METÁLICOS

1. Factores de riesgo en el corte



- 2. Normas de seguridad y manipulación en el corte
- 3. Medidas de prevención: Utilización de equipos de protección individual

#### UNIDAD DIDÁCTICA 2. CORTE DE CHAPAS Y PERFILES CON OXICORTE

- 1. Fundamentos y tecnología del oxicorte
- 2. Características del equipo y elementos auxiliares que componen la instalación del equipo de oxicorte manual:
- 3. Componentes del equipo. Instalación
- 4. Gases empleados en oxicorte. Influencia del gas sobre el proceso de corte
- 5. Técnicas operativas con oxicorte:
- 6. Manejo y ajuste de parámetros del equipo
- 7. Variables a tener en cuenta en el proceso de oxicorte manual
- 8. Retrocesos del oxicorte
- 9. Velocidades de corte en relación con el material y el espesor de las piezas
- 10. Defectos del oxicorte: causas y correcciones
- 11. Mantenimiento básico
- 12. Aplicación práctica de corte de chapas, perfiles y tubos con oxicorte

## UNIDAD DIDÁCTICA 3. CORTE DE CHAPAS Y PERFILES CON ARCOPLASMA

- 1. Fundamentos y tecnología del arcoplasma
- 2. Características del equipo y elementos auxiliares que componen la instalación del equipo de arcoplasma manual:
- 3. Componentes del equipo. Instalación
- 4. Gases plasmágenos. Características e influencia del gas sobre el proceso de corte
- 5. Tipos y características de los electrodos y portaelectrodos para el arcoplasma
- 6. Técnicas operativas con arcoplasma:
- 7. Manejo y ajuste de parámetros del equipo
- 8. Variables a tener en cuenta en el proceso de arcoplasma manual
- 9. Velocidades de corte en relación con el material y el espesor de las piezas



- 10. Defectos del arcoplasma: causas y correcciones
- 11. Mantenimiento básico
- 12. Aplicación práctica de corte de chapas, perfiles y tubos con arcoplasma

#### UNIDAD DIDÁCTICA 4. CORTE DE CHAPAS Y PERFILES POR ARCO AIRE

- 1. Uso en la preparación de bordes en soldaduras y resanado de piezas defectuosas
- 2. Características del equipo y elementos auxiliares:
- 3. Componentes del equipo
- 4. Técnicas operativas con arco aire:
- 5. Manejo y ajuste de parámetros del equipo
- 6. Variables a tener en cuenta en el proceso de arco aire
- 7. Defectos del corte por arco aire: causas y correcciones
- 8. Mantenimiento básico
- 9. Aplicación práctica de corte por arco aire

#### UNIDAD DIDÁCTICA 5. CORTE MECÁNICO DE CHAPAS Y PERFILES

- 1. Equipos de corte mecánico:
- 2. Tipos, características
- 3. Mantenimiento básico
- 4. Aplicación práctica de corte mecánico

## UNIDAD DIDÁCTICA 6. MÁQUINAS DE CORTE CON OXICORTE Y PLASMA AUTOMÁTICAS

- 1. Máquinas de corte por lectura óptica
- 2. Máquinas tipo pórtico automatizadas con CNC
- 3. Elementos principales de una instalación automática:
- 4. Sistema óptico de seguimiento de plantillas y planos (máquina de lectura óptica)
- 5. Cabezal o soporte de sujeción del portasoplete o portaelectrodo, simple o múltiple
- 6. Sistemas de regulación manual, automático o integrado



7. - Sistemas de control de altura del soplete o portaelectrodo por sonda eléctrica o de contacto

### UNIDAD DIDÁCTICA 7. MEDICIÓN, VERIFICACIÓN Y CONTROL EN EL CORTE

- 1. Tolerancias: características a controlar
- 2. Útiles de medida y comprobación
- 3. Control dimensional del producto final: comprobación del ajuste a las tolerancias marcadas

UNIDAD FORMATIVA 2. SOLDADURA MAG DE CHAPAS DE ACERO AL CARBONO

UNIDAD DIDÁCTICA 1. SIMBOLOGÍA EN SOLDADURA



- 1. Tipos de soldaduras
- 2. Posiciones de soldeo
- 3. Tipos de uniones
- 4. Preparación de bordes
- 5. Normas que regulan la simbolización en soldadura
- 6. Partes de un símbolo de soldadura
- 7. Significado y localización de los elementos de un símbolo de soldadura
- 8. Tipos y simbolización de los procesos de soldadura
- 9. Símbolos básicos de soldadura
- 10. Símbolos suplementarios
- 11. Símbolos de acabado
- 12. Posición de los símbolos en los dibujos
- 13. Dimensiones de las soldaduras y su inscripción
- 14. Indicaciones complementarias
- 15. Normativa y simbolización de electrodos revestidos
- 16. Aplicación práctica de interpretación de símbolos de soldadura

#### UNIDAD DIDÁCTICA 2. INTERPRETACIÓN DE PLANOS DE SOLDADURA

- 1. Clasificación y características de los sistemas de representación gráfica
- 2. Estudio de las vistas de un objeto en el dibujo
- 3. Tipos de líneas empleadas en los planos. Denominación y aplicación
- 4. Representación de cortes, detalles y secciones
- 5. El acotado en el dibujo. Normas de acotado
- 6. Escalas más usuales. Uso del escalímetro
- 7. Uso de tolerancias
- 8. Croquizado de piezas
- 9. Simbología empleada en los planos
- 10. Tipos de formatos y cajetines en los planos
- 11. Representación de elementos normalizados
- 12. Representación de materiales
- 13. Representación de tratamientos térmicos y superficiales
- 14. Lista de materiales



15. Aplicación práctica de interpretación de planos de soldadura

#### UNIDAD DIDÁCTICA 3. TECNOLOGÍA DE SOLDEO MAG

- 1. Fundamentos de la soldadura MAG
- 2. Ventajas y limitaciones del proceso
- 3. Normativa aplicable al proceso
- 4. Características y soldabilidad de los aceros al carbono
- 5. Características y aplicaciones de las formas de transferencia:
- 6. Arco spray
- 7. Arco pulsado
- 8. Arco globular
- 9. Arco corto o cortocircuito
- 10. Arco rotativo
- 11. Gases de protección
- 12. Tipos de gases utilizados, sus características y aplicaciones
- 13. Influencia de las propiedades del gas CO2 en el aspecto de la soldadura
- 14. Influencia de las propiedades de los gases inertes en el proceso de soldadura
- 15. Caudal de gas para cada proceso de soldadura. Influencia del caudal regulado
- 16. Hilos:
- 17. Tipos de hilos utilizados, sus características y aplicaciones
- 18. Diámetros del hilo
- 19. Especificaciones para hilos según normativa
- 20. Selección de la pareja hilo-gas
- 21. Conocimiento e influencia de los parámetros principales a regular en la soldadura MAG: Polaridad. Tensión de arco. Intensidad de corriente. Diámetro y velocidad de alimentación del hilo. Naturaleza y caudal del gas

#### UNIDAD DIDÁCTICA 4. EQUIPOS DE SOLDEO MAG

 Conocimiento de los elementos que componen la instalación de soldadura MAG: Generador de corriente. Unidad de alimentación del hilo. Botellas de gas CO2 y mezclas. Manorreductor-caudalimetro. Calentador de gas



- 2. Instalación, puesta a punto y manejo de la instalación de soldadura MAG
- 3. Mantenimiento del equipo de soldeo MAG
- 4. Útiles de sujeción

### UNIDAD DIDÁCTICA 5. TÉCNICAS OPERATIVAS DE SOLDEO MAG DE CHAPAS DE ACERO AL CARBONO

- Formas de las juntas: Preparación de las uniones a soldar. Técnicas y normas de punteado
- 2. Selección de la forma de transferencia
- Regulación de los parámetros principales en la soldadura MAG de chapas: Polaridad.
   Tensión de arco. Intensidad de corriente. Diámetro y velocidad de alimentación del hilo.
   Naturaleza y caudal del gas
- 4. Inclinación de la pistola según junta y posición de soldeo
- 5. Sentido de avance en aportación de material
- 6. Distancia pistola-pieza
- 7. Técnica de soldeo en las diferentes posiciones de soldadura
- 8. Distribución de los diferentes cordones de penetración, relleno y peinado
- 9. Tratamientos presoldeo y postsoldeo
- 10. Aplicación práctica de soldeo de chapas de acero al carbono en diferentes posiciones con hilo sólido

### UNIDAD DIDÁCTICA 6. DEFECTOS EN LA SOLDADURA MAG DE CHAPAS DE ACERO AL CARBONO

- 1. Inspección visual de las soldaduras
- 2. Ensayos utilizados para la detección de errores en la soldadura MAG
- 3. Tipos de defectos más comunes
- 4. Factores a tener en cuenta para cada uno de los defectos
- 5. Causas y correcciones de los defectos

#### UNIDAD DIDÁCTICA 7. NORMATIVA DE PREVENCIÓN DE RIESGOS



### LABORALES Y MEDIOAMBIENTALES EN LA SOLDADURA MAG DE CHAPAS DE ACERO AL CARBONO

- 1. Evaluación de riesgos en el soldeo MAG
- 2. Normas de seguridad y elementos de protección
- 3. Utilización de equipos de protección individual
- 4. Gestión medioambiental. Tratamiento de residuos

### UNIDAD FORMATIVA 3. SOLDADURA MAG DE ESTRUCTURAS DE ACERO AL CARBONO

### UNIDAD DIDÁCTICA 1. TÉCNICAS OPERATIVAS DE SOLDEO MAG DE PERFILES NORMALIZADOS DE ACERO AL CARBONO

- 1. Tipos y características de los perfiles normalizados
- 2. Formas de las juntas:
- 3. Preparación de las uniones a soldar
- 4. Técnicas y normas de punteado
- 5. Instalación y mantenimiento básico del equipo de soldeo MAG
- 6. Instalación de los útiles de sujeción
- 7. Selección de la forma de transferencia
- 8. Regulación de los parámetros principales en la soldadura MAG de perfiles: Polaridad.

  Tensión de arco. Intensidad de corriente. Diámetro y velocidad de alimentación del hilo.

  Naturaleza y caudal del gas
- 9. Inclinación de la pistola según junta y posición de soldeo
- 10. Sentido de avance en aportación de material
- 11. Distancia pistola-pieza
- 12. Técnica de soldeo en las diferentes posiciones de soldadura
- 13. Distribución de los diferentes cordones de penetración, relleno y peinado
- 14. Tratamientos presoldeo y postsoldeo
- 15. Aplicación práctica de soldeo de perfiles de acero al carbono en diferentes posiciones



#### con hilo sólido

### UNIDAD DIDÁCTICA 2. TÉCNICAS OPERATIVAS DE SOLDEO MAG DE TUBOS DE ACERO AL CARBONO

- 1. Formas de las juntas:
- 2. Preparación de las uniones a soldar
- 3. Técnicas y normas de punteado
- 4. Instalación y mantenimiento básico del equipo de soldeo MAG
- 5. Instalación de los útiles de sujeción
- 6. Selección de la forma de transferencia
- 7. Regulación de los parámetros principales en la soldadura MAG de tubos: Polaridad.

  Tensión de arco. Intensidad de corriente. Diámetro y velocidad de alimentación del hilo.

  Naturaleza y caudal del gas
- 8. Inclinación de la pistola según junta y posición de soldeo
- 9. Sentido de avance en aportación de material
- 10. Distancia pistola-pieza
- 11. Técnica de soldeo en las diferentes posiciones de soldadura
- 12. Distribución de los diferentes cordones de penetración, relleno y peinado
- 13. Tratamientos presoldeo y postsoldeo
- 14. Aplicación práctica de soldeo de tubos de acero al carbono en diferentes posiciones con hilo sólido

### UNIDAD DIDÁCTICA 3. DEFECTOS EN LA SOLDADURA MAG DE ESTRUCTURAS DE ACERO AL CARBONO

- 1. Inspección visual de las soldaduras
- 2. Ensayos utilizados para la detección de errores
- 3. Tipos de defectos más comunes
- 4. Factores a tener en cuenta para cada uno de los defectos
- 5. Causas y correcciones de los defectos



# UNIDAD DIDÁCTICA 4. NORMATIVA DE PREVENCIÓN DE RIESGOS LABORALES Y MEDIOAMBIENTALES EN LA SOLDADURA MAG DE ESTRUCTURAS DE ACERO AL CARBONO

- 1. Evaluación de riesgos en el soldeo MAG
- 2. Normas de seguridad y elementos de protección
- 3. Utilización de equipos de protección individual
- 4. Gestión medioambiental. Tratamiento de residuos

### UNIDAD FORMATIVA 4. SOLDADURA MIG DE ACERO INOXIDABLE Y ALUMNIO

#### UNIDAD DIDÁCTICA 1. TECNOLOGÍA DE SOLDEO MIG

- 1. Fundamentos de la soldadura MIG
- 2. Ventajas y limitaciones del proceso
- 3. Aplicaciones del proceso
- 4. Analogías y diferencias entre MIG y MAG
- 5. Normativa aplicable al proceso
- 6. Material base en el soldeo MIG: Acero inoxidable
- Clasificación y designación: auteníticos, ferríticos, martensíticos y austeno-ferríticos o dúplex
- 8. Componentes de aleación. Influencia en la soldabilidad
- 9. Características físicas, químicas y mecánicas, y su influencia en la soldadura
- 10. Propiedades principales
- 11. Soldabilidad de los aceros en función de su estructura
- 12. Manipulación
- 13. Aplicaciones
- 14. Material base en el soldeo MIG: Aluminio:
- 15. Clasificación y designación



- 16. Componentes de aleación. Influencia en la soldabilidad
- 17. Características físicas, químicas y mecánicas
- 18. Propiedades principales
- 19. Manipulación
- 20. Soldabilidad
- 21. Aplicaciones

### UNIDAD DIDÁCTICA 2. PROCESO DE SOLDEO MIG PARA ACERO INOXIDABLE

- 1. Formas de las juntas
- 2. Preparación de las uniones a soldar
- 3. Método de punteado y su proceso de ejecución
- 4. Conocimiento de los elementos que componen la instalación de soldadura MIG para acero inoxidable
- 5. Generador de corriente: Máquina sinérgica
- 6. Unidad de alimentación del hilo
- 7. Botellas de gas inerte
- 8. Manorreductor-caudalimetro
- 9. Gases industriales para la protección del reverso
- Instalación, puesta a punto y manejo de la instalación de soldadura MIG para acero inoxidable
- 11. Mantenimiento de primer nivel de la instalación de soldadura
- 12. Útiles de sujeción
- 13. Tipos de gases inertes utilizados, sus características, aplicaciones e influencia en el proceso de soldeo
- 14. Tipos de mezclas de gases utilizados para la protección del reverso de soldadura y su influencia en el proceso
- 15. Tipos de hilos utilizados, diámetros, designación, características y aplicaciones
- 16. Formas de transferencia
- 17. Conocimiento y regulación de los parámetros principales en la soldadura MIG de acero inoxidable: Polaridad de la corriente. Diámetro del hilo. Intensidad de corriente. Tensión. Caudal de gas. Longitud libre del hilo



- 18. Selección del material de aporte
- 19. Técnicas de soldeo en las diferentes posiciones de soldadura
- 20. Inclinación de la pistola según junta y posición de soldeo
- 21. Técnicas para el control de la temperatura
- 22. Distribución de los diferentes cordones de penetración, relleno y peinado
- 23. Medidas de limpieza en la preparación, ejecución y acabado de la soldadura
- 24. Medidas para evitar la contaminación y corrosión
- 25. Tipos de defectos mas comunes: Factores a tener en cuenta para cada uno de los defectos. Causas y correcciones
- 26. Aplicación práctica de soldeo de chapas, perfiles y tubos de acero inoxidable con hilo sólido

#### UNIDAD DIDÁCTICA 3. PROCESO DE SOLDEO MIG PARA ALUMINIO

- 1. Formas de las juntas
- 2. Normas sobre la preparación de chaflanes
- 3. Preparación de las uniones a soldar. Limpieza de los bordes
- 4. Método de punteado y su proceso de ejecución
- 5. Conocimiento de los elementos que componen la instalación de soldadura MIG para aluminio: Generador de corriente: Máquina sinérgica. Unidad de alimentación del hilo. Botellas de gas inerte. Manorreductor-caudalimetro. Gases industriales para el soldeo
- 6. Instalación, puesta a punto y manejo de la instalación de soldadura MIG para aluminio
- 7. Mantenimiento de primer nivel de la instalación de soldadura
- 8. Útiles de sujeción
- 9. Tipos de gases inertes utilizados, sus características, aplicaciones e influencia en el proceso de soldeo
- Tipos de hilos utilizados, diámetros, designación, composición, características y aplicaciones. Formas de conservación
- 11. Formas de transferencia
- 12. Conocimiento y regulación de los parámetros principales en la soldadura MIG de acero inoxidable: Polaridad de la corriente. Diámetro del hilo. Intensidad de corriente. Tensión. Caudal de gas. Longitud libre del hilo
- 13. Selección de material de aporte



- 14. Técnicas de soldeo en las diferentes posiciones de soldeo
- 15. Inclinación de la pistola según junta y posición de soldeo
- 16. Distribución de los diferentes cordones de penetración, relleno y peinado
- 17. Limpieza final de la soldadura
- 18. Medidas de limpieza en la preparación, ejecución y acabado de la soldadura
- 19. Ensayos a los que se somete el cordón de soldadura
- 20. Tipos de defectos mas comunes: Factores a tener en cuenta para cada uno de los defectos. Causas y correcciones
- 21. Aplicación práctica de soldeo de chapas, perfiles y tubos de aluminio con hilo sólido

### UNIDAD DIDÁCTICA 4. PROCESO DE PROYECCIÓN TÉRMICA POR ARCO

- 1. Fundamentos de la proyección térmica por arco
- 2. Características del equipo de proyección térmica por arco. Descripción de elementos y accesorios. Conservación de los equipos
- 3. Metales base y metales de aporte
- 4. Preparación de la superficie a proyectar
- 5. Variables a tener en cuenta en la proyección térmica
- 6. Aplicaciones típicas
- 7. Inspección visual. Detección y análisis de defectos

# UNIDAD DIDÁCTICA 5. NORMATIVA DE PREVENCIÓN DE RIESGOS LABORALES Y MEDIOAMBIENTALES EN LA SOLDADURA MIG Y LA PROYECCIÓN TÉRMICA POR ARCO

- 1. Evaluación de riesgos en el soldeo MIG y la proyección térmica por arco
- 2. Normas de seguridad y elementos de protección
- 3. Utilización de equipos de protección individual
- 4. Gestión medioambiental. Tratamiento de residuos



#### UNIDAD FORMATIVA 5. SOLDADURA CON ALAMBRE TUBULAR

## UNIDAD DIDÁCTICA 1. PROCESO DE SOLDEO CON HILO TUBULAR (FCAW).

- 1. Fundamentos del proceso. Aplicaciones
- 2. Ventajas del uso del hilo tubular
- 3. Metales base para el soldeo FCAW
- 4. Métodos de protección del arco:
- 5. Protección gaseosa
- 6. Autoprotección
- 7. Hilos tubulares:
- 8. Tipos, características y aplicaciones
- 9. Especificaciones según AWS
- 10. Especificaciones según EN.
- 11. Parámetros para la selección del hilo
- 12. Gases de protección
- 13. Ventajas y aplicaciones del CO2
- 14. Tipos y aplicaciones de las mezclas de gases

UNIDAD DIDÁCTICA 2. EQUIPOS DE SOLDEO CON ALAMBRE TUBULAR



- Elementos que componen la instalación de soldadura MIG/MAG con alambre tubular:
   Fuente de poder. Alimentación del alambre y sistema de control. Antorcha y cable.
   Electrodo tubular. Sistema de alimentación del gas de protección (en los procesos con protección gaseosa). Sistema de extracción de humos
- 2. Instalación, puesta a punto y manejo de la instalación
- 3. Con protección gaseosa
- 4. Con autoprotección
- 5. Mantenimiento de primer nivel del equipo y maquinaria

### UNIDAD DIDÁCTICA 3. TÉCNICAS OPERATIVAS DE SOLDEO CON ALAMBRE TUBULAR

- 1. Formas de las juntas:
- 2. Preparación de las uniones a soldar
- 3. Técnicas y normas de punteado
- 4. Regulación de los parámetros principales en la soldadura MAG con alambre tubular: Corriente de soldadura. Voltaje de arco. Extensión del electrodo
- 5. Velocidad de desplazamiento. Flujo de gas protector (en el sistema con protección gaseosa). Velocidad de deposición y eficiencia
- 6. Inclinación y dirección de avance de la pistola
- 7. Distancia pieza-pistola
- 8. Técnicas de soldeo:
- 9. Con de gas de protección
- 10. Con hilo de autoprotección
- 11. Limpieza de las escorias
- 12. Generación de humos. Métodos para su disminución
- 13. Tratamientos presoldeo y postsoldeo
- 14. Aplicación práctica de soldeo de chapas de acero al carbono, aluminio y acero inoxidable con alambre tubular

#### UNIDAD DIDÁCTICA 4. DEFECTOS EN LA SOLDADURA CON ALAMBRE



#### **TUBULAR**

- 1. Inspección visual de las soldaduras
- 2. Ensayos utilizados para la detección de errores
- 3. Tipos de defectos más comunes
- 4. Factores a tener en cuenta para cada uno de los defectos
- 5. Causas y correcciones de los defectos

### UNIDAD DIDÁCTICA 5. NORMATIVA DE PREVENCIÓN DE RIESGOS LABORALES Y MEDIOAMBIENTALES EN LA SOLDADURA CON ALAMBRE TUBULAR

- 1. Evaluación de riesgos en el soldeo con alambre tubular
- 2. Normas de seguridad y elementos de protección
- 3. Utilización de equipos de protección individual
- 4. Gestión medioambiental. Tratamiento de residuos





C/ San Lorenzo 2 - 2 29001 Málaga



Tlf: 952 215 476 Fax: 951 987 941



www.academiaintegral.com.es

E-mail: info@academiaintegral.com.es

